Algorithm and data structure
  • Algorithm and data structure
  • Break Away: Programming And Coding Interviews & Cracking coding interview
    • System design and scalability
    • Performance and Complexity
    • Big O Notation
    • Sorting trade-off
    • Selection sort
    • Bubble sort
    • Insertion sort
    • Shell sort
    • Merge sort
    • Quick sort
    • Binary search
    • Recursion
    • Binary tree
    • Breadth First Traversal
    • Depth First Pre-Order
    • Binary search tree
    • Stack
    • Queue
    • Linked list
    • Doubly linked list
    • String
    • Pointer and array
    • Bit manipulation
    • General programming problems
    • Priority queue
    • Balanced binary search tree
    • Binary heap
    • Heap sort
    • Graphs
    • Topological sort
  • Leetcode
    • 1. Two Sum
    • 2. Add Two Numbers
    • 3. Longest Substring Without Repeating Characters
    • 4. Median of Two Sorted Arrays
    • 5. Longest Palindromic Substring
    • 6.ZigZag Conversion
    • 7. Reverse Integer
    • 8. String to Integer (atoi)
    • 9. Palindrome Number
    • 11. Container With Most Water
    • 12. Integer to Roman
    • 13. Roman to Integer
    • 14. Longest Common Prefix
    • 15. 3Sum
    • 16. 3Sum Closest
    • 17. Letter Combinations of a Phone Number
    • 18. 4Sum
    • 19. Remove Nth Node From End of List
    • 20. Valid Parentheses
    • 21. Merge Two Sorted Lists
    • 22. Generate Parentheses
    • 23. Merge k Sorted Lists
    • 24. Swap Nodes in Pairs
    • 25. Reverse Nodes in k-Group
    • 26. Remove Duplicates from Sorted Array
    • 27. Remove Element
    • 28. Implement strStr()
    • 29. Divide Two Integers
    • 30. Substring with Concatenation of All Words
    • 31. Next Permutation
    • 32. Longest Valid Parentheses
    • 33. Search in Rotated Sorted Array
    • 34. Find First and Last Position of Element in Sorted Array
    • 35. Search Insert Position (Easy)
    • 36. Valid Sudoku
    • 37. Sudoku Solver
    • 38. Count and Say
    • 39. Combination Sum
    • 40. Combination Sum II
    • 41. First Missing Positive
    • 43. Multiply Strings
    • 45. Jump Game II
    • 46. Permutations (Medium)
    • 47. Permutations II (Medium)
    • 48. Rotate Image
    • 49. Group Anagrams
    • 50. Pow(x, n)
    • 51. N-Queens
    • 52. N-Queens II
    • 53. Maximum Subarray
    • 54. Spiral Matrix
    • 55. Jump Game
    • 56. Merge Intervals
    • 57. Insert Interval
    • 58. Length of Last Word
    • 59. Spiral Matrix II
    • 61. Rotate List
    • 62. Unique Paths
    • 63. Unique Paths II
    • 64. Minimum Path Sum
    • 66. Plus One
    • 67. Add Binary
    • 69. Sqrt(x)
    • 70. Climbing Stairs
    • 73. Set Matrix Zeroes
    • 74. Search a 2D Matrix
    • 75. Sort Colors
    • 76. Minimum Window Substring
    • 77. Combinations
    • 78. Subsets
    • 79. Word Search
    • 80. Remove Duplicates from Sorted Array II
    • 81. Search in Rotated Sorted Array II
    • 82. Remove Duplicates from Sorted List II
    • 83. Remove Duplicates from Sorted List
    • 84. Largest Rectangle in Histogram
    • 86. Partition List
    • 88. Merge Sorted Array
    • 89. Gray Code
    • 90. Subsets II
    • 92. Reverse Linked List II
    • 94. Binary Tree Inorder Traversal (Medium)
    • 95. Unique Binary Search Trees II
    • 96. Unique Binary Search Trees
    • 98. Validate Binary Search Tree
    • 100. Same Tree (Easy)
    • 101. Symmetric Tree
    • 102. Binary Tree Level Order Traversal
    • 103. Binary Tree Zigzag Level Order Traversal
    • 104. Maximum Depth of Binary Tree
    • 105. Construct Binary Tree from Preorder and Inorder Traversal
    • 106. Construct Binary Tree from Inorder and Postorder Traversal
    • 107. Binary Tree Level Order Traversal II (Easy)
    • 108. Convert Sorted Array to Binary Search Tree
    • 109. Convert Sorted List to Binary Search Tree
    • 110. Balanced Binary Tree
    • 111. Minimum Depth of Binary Tree
    • 112. Path Sum
    • 113. Path Sum II
    • 114. Flatten Binary Tree to Linked List
    • 116. Populating Next Right Pointers in Each Node
    • 117. Populating Next Right Pointers in Each Node IIㄟˋ大
    • 118. Pascal's Triangle
    • 119. Pascal's Triangle II
    • 120. Triangle
    • 121. Best Time to Buy and Sell Stock
    • 122. Best Time to Buy and Sell Stock II
    • 123. Best Time to Buy and Sell Stock III
    • 125. Valid Palindrome
    • 654. Maximum Binary Tree
    • 127. Word Ladder
    • 129. Sum Root to Leaf Numbers
    • 130. Surrounded Regions (Medium)
    • 131. Palindrome Partitioning
    • 133. Clone Graph
    • 134. Gas Station
    • 136. Single Number
    • 137. Single Number II
    • 138. Copy List with Random Pointer
    • 139. Word Break
    • 141. Linked List Cycle
    • 143. Reorder List
    • 144. Binary Tree Preorder Traversal
    • 145. Binary Tree Postorder Traversal
    • 147. Insertion Sort List
    • 148. Sort List
    • 151. Reverse Words in a String
    • 152. Maximum Product Subarray
    • 153. Find Minimum in Rotated Sorted Array
    • 154. Find Minimum in Rotated Sorted Array II
    • 155. Min Stack
    • 160. Intersection of Two Linked Lists
    • 164. Maximum Gap
    • 169. Majority Element (Easy)
    • 173. Binary Search Tree Iterator
    • 174. Dungeon Game (Hard)
    • 189. Rotate Array
    • 198. House Robber (Easy)
    • 199. Binary Tree Right Side View (Medium)
    • 203. Remove Linked List Elements
    • 206. Reverse Linked List
    • 213. House Robber II (Medium)
    • 215. Kth Largest Element in an Array (Medium)
    • 222. Count Complete Tree Nodes
    • 226. Invert Binary Tree
    • 230. Kth Smallest Element in a BST
    • 232. Implement Queue using Stacks
    • 234. Palindrome Linked List (Easy)
    • 235. Lowest Common Ancestor of a Binary Search Tree
    • 236. Lowest Common Ancestor of a Binary Tree
    • 237. Delete Node in a Linked List
    • 240. Search a 2D Matrix II
    • 242. Valid Anagram
    • 257. Binary Tree Paths
    • 283. Move Zeroes
    • 337. House Robber III (Medium)
    • 347. Top K Frequent Elements
    • 349. Intersection of Two Arrays
    • 409. Longest Palindrome (Easy)
    • 437. Path Sum III
    • 442. Find All Duplicates in an Array
    • 449. Serialize and Deserialize BST
    • 450. Delete Node in a BST
    • 543. Diameter of Binary Tree
    • 572. Subtree of Another Tree
    • 653. Two Sum IV - Input is a BST
    • 654. Maximum Binary Tree
    • 700. Search in a Binary Search Tree
    • 701. Insert into a Binary Search Tree
    • 783. Minimum Distance Between BST Nodes
    • 876.Middle of the Linked List
    • 942. DI String Match
  • Notes of algorithms
    • Binary Tree traversal
    • 廣度優先搜尋 (Breadth-first Search)
    • Divide and Conquer
    • Linked list: Insert Node
    • Dynamic programming
    • 深度優先搜尋 (Depth-first Search)
    • Lowest Common Ancestor (LCA)
    • Asymptotic notation
    • Binary search tree
    • AVL Tree (Height Balanced BST)
    • Linked list: Split the list
    • Linked list: Traverse the list
    • Linked list: Delete node
    • Heap sort
    • Cartesian tree
  • C++
Powered by GitBook
On this page
  • 1.Big O Notation
  • 2.Other cases (straight forward)
  • 3.Other cases (not straight forward)
  1. Break Away: Programming And Coding Interviews & Cracking coding interview

Big O Notation

Big O Notation是用來衡量Complexity的指標

1.Big O Notation

  • The big O notation allows us to express complexity as a measure of its input size expressing complexity

  • The complexity analysis is based on the worst case scenario, 只考慮worst case (最複雜的case)

  • This express the complexity of an algorithm

    • Constant complexity

      • Hint: The complexity is based on the size of the input, the code takes the same time whatever the value of N, it uses the value of N, rather than use it as a size of input

    • O(N)

      • The complexity of an algorithm is O(N) if the time taken by the algorithm increases linearly when N increases

      • Hint: The number of operations obviously changes with the size of the input

    • O(N^2)

      • The complexity of an algorithm is O(N^2) if the time taken by the algorithm increases quadratically when N increases

      • Hint: Two nest loops will be of higher complexity, the complexity of this operation is O(N^2), as N changes quadratically.

  • 當表達complexity時, 低位項以及常數項通常可以被忽略, 因為假設N非常大

  • O(N^2 + 10000) is equivalent to O(N^2)

  • O(N^2 + N) is equivalent to O(N^2)

2.Other cases (straight forward)

  • 兩個迴圈, 一個是固定大小, 一個是用傳進來的參數n

    • O(N)

  • 兩個迴圈, 分別是用傳進來的參數m, n

    • both m,n can be very large

      • O(N + M)

  • 雙層迴圈, 分別是用傳進來的參數m, n

    • both m,n can be very large

    • O(N * M)

  • 雙層迴圈, 用傳進來的參數n, 後面又有一個迴圈n

    • 只看最複雜的項

    • O(N^2)

3.Other cases (not straight forward)

  • 雙層迴圈, 用傳進來的參數n, 外圈是1 ~ n, 內圈是n/2 ~ n

    public static void doublingLoopVariable(int n) {
        for (int i = 0; i < n) {
            System.out.println("Value of i is: " + i);
            i = i * 2;
        }
    }
    • N * N/2 = O(N^2)

  • i在迴圈中改變

    • 每次i都會是之前的兩倍: 1, 2, 4, 8..., i的成長等同於2^i

    • There is some number "k" for which

      2 ^ k = N
    • Let's derive this, the value of "i" doubles at every iteration

      2 ^ k = N
      log2(2 ^ K) = log2 N
      K * log2 2 = log2 N
      K = log2 N

PreviousPerformance and ComplexityNextSorting trade-off

Last updated 6 years ago