Algorithm and data structure
  • Algorithm and data structure
  • Break Away: Programming And Coding Interviews & Cracking coding interview
    • System design and scalability
    • Performance and Complexity
    • Big O Notation
    • Sorting trade-off
    • Selection sort
    • Bubble sort
    • Insertion sort
    • Shell sort
    • Merge sort
    • Quick sort
    • Binary search
    • Recursion
    • Binary tree
    • Breadth First Traversal
    • Depth First Pre-Order
    • Binary search tree
    • Stack
    • Queue
    • Linked list
    • Doubly linked list
    • String
    • Pointer and array
    • Bit manipulation
    • General programming problems
    • Priority queue
    • Balanced binary search tree
    • Binary heap
    • Heap sort
    • Graphs
    • Topological sort
  • Leetcode
    • 1. Two Sum
    • 2. Add Two Numbers
    • 3. Longest Substring Without Repeating Characters
    • 4. Median of Two Sorted Arrays
    • 5. Longest Palindromic Substring
    • 6.ZigZag Conversion
    • 7. Reverse Integer
    • 8. String to Integer (atoi)
    • 9. Palindrome Number
    • 11. Container With Most Water
    • 12. Integer to Roman
    • 13. Roman to Integer
    • 14. Longest Common Prefix
    • 15. 3Sum
    • 16. 3Sum Closest
    • 17. Letter Combinations of a Phone Number
    • 18. 4Sum
    • 19. Remove Nth Node From End of List
    • 20. Valid Parentheses
    • 21. Merge Two Sorted Lists
    • 22. Generate Parentheses
    • 23. Merge k Sorted Lists
    • 24. Swap Nodes in Pairs
    • 25. Reverse Nodes in k-Group
    • 26. Remove Duplicates from Sorted Array
    • 27. Remove Element
    • 28. Implement strStr()
    • 29. Divide Two Integers
    • 30. Substring with Concatenation of All Words
    • 31. Next Permutation
    • 32. Longest Valid Parentheses
    • 33. Search in Rotated Sorted Array
    • 34. Find First and Last Position of Element in Sorted Array
    • 35. Search Insert Position (Easy)
    • 36. Valid Sudoku
    • 37. Sudoku Solver
    • 38. Count and Say
    • 39. Combination Sum
    • 40. Combination Sum II
    • 41. First Missing Positive
    • 43. Multiply Strings
    • 45. Jump Game II
    • 46. Permutations (Medium)
    • 47. Permutations II (Medium)
    • 48. Rotate Image
    • 49. Group Anagrams
    • 50. Pow(x, n)
    • 51. N-Queens
    • 52. N-Queens II
    • 53. Maximum Subarray
    • 54. Spiral Matrix
    • 55. Jump Game
    • 56. Merge Intervals
    • 57. Insert Interval
    • 58. Length of Last Word
    • 59. Spiral Matrix II
    • 61. Rotate List
    • 62. Unique Paths
    • 63. Unique Paths II
    • 64. Minimum Path Sum
    • 66. Plus One
    • 67. Add Binary
    • 69. Sqrt(x)
    • 70. Climbing Stairs
    • 73. Set Matrix Zeroes
    • 74. Search a 2D Matrix
    • 75. Sort Colors
    • 76. Minimum Window Substring
    • 77. Combinations
    • 78. Subsets
    • 79. Word Search
    • 80. Remove Duplicates from Sorted Array II
    • 81. Search in Rotated Sorted Array II
    • 82. Remove Duplicates from Sorted List II
    • 83. Remove Duplicates from Sorted List
    • 84. Largest Rectangle in Histogram
    • 86. Partition List
    • 88. Merge Sorted Array
    • 89. Gray Code
    • 90. Subsets II
    • 92. Reverse Linked List II
    • 94. Binary Tree Inorder Traversal (Medium)
    • 95. Unique Binary Search Trees II
    • 96. Unique Binary Search Trees
    • 98. Validate Binary Search Tree
    • 100. Same Tree (Easy)
    • 101. Symmetric Tree
    • 102. Binary Tree Level Order Traversal
    • 103. Binary Tree Zigzag Level Order Traversal
    • 104. Maximum Depth of Binary Tree
    • 105. Construct Binary Tree from Preorder and Inorder Traversal
    • 106. Construct Binary Tree from Inorder and Postorder Traversal
    • 107. Binary Tree Level Order Traversal II (Easy)
    • 108. Convert Sorted Array to Binary Search Tree
    • 109. Convert Sorted List to Binary Search Tree
    • 110. Balanced Binary Tree
    • 111. Minimum Depth of Binary Tree
    • 112. Path Sum
    • 113. Path Sum II
    • 114. Flatten Binary Tree to Linked List
    • 116. Populating Next Right Pointers in Each Node
    • 117. Populating Next Right Pointers in Each Node IIㄟˋ大
    • 118. Pascal's Triangle
    • 119. Pascal's Triangle II
    • 120. Triangle
    • 121. Best Time to Buy and Sell Stock
    • 122. Best Time to Buy and Sell Stock II
    • 123. Best Time to Buy and Sell Stock III
    • 125. Valid Palindrome
    • 654. Maximum Binary Tree
    • 127. Word Ladder
    • 129. Sum Root to Leaf Numbers
    • 130. Surrounded Regions (Medium)
    • 131. Palindrome Partitioning
    • 133. Clone Graph
    • 134. Gas Station
    • 136. Single Number
    • 137. Single Number II
    • 138. Copy List with Random Pointer
    • 139. Word Break
    • 141. Linked List Cycle
    • 143. Reorder List
    • 144. Binary Tree Preorder Traversal
    • 145. Binary Tree Postorder Traversal
    • 147. Insertion Sort List
    • 148. Sort List
    • 151. Reverse Words in a String
    • 152. Maximum Product Subarray
    • 153. Find Minimum in Rotated Sorted Array
    • 154. Find Minimum in Rotated Sorted Array II
    • 155. Min Stack
    • 160. Intersection of Two Linked Lists
    • 164. Maximum Gap
    • 169. Majority Element (Easy)
    • 173. Binary Search Tree Iterator
    • 174. Dungeon Game (Hard)
    • 189. Rotate Array
    • 198. House Robber (Easy)
    • 199. Binary Tree Right Side View (Medium)
    • 203. Remove Linked List Elements
    • 206. Reverse Linked List
    • 213. House Robber II (Medium)
    • 215. Kth Largest Element in an Array (Medium)
    • 222. Count Complete Tree Nodes
    • 226. Invert Binary Tree
    • 230. Kth Smallest Element in a BST
    • 232. Implement Queue using Stacks
    • 234. Palindrome Linked List (Easy)
    • 235. Lowest Common Ancestor of a Binary Search Tree
    • 236. Lowest Common Ancestor of a Binary Tree
    • 237. Delete Node in a Linked List
    • 240. Search a 2D Matrix II
    • 242. Valid Anagram
    • 257. Binary Tree Paths
    • 283. Move Zeroes
    • 337. House Robber III (Medium)
    • 347. Top K Frequent Elements
    • 349. Intersection of Two Arrays
    • 409. Longest Palindrome (Easy)
    • 437. Path Sum III
    • 442. Find All Duplicates in an Array
    • 449. Serialize and Deserialize BST
    • 450. Delete Node in a BST
    • 543. Diameter of Binary Tree
    • 572. Subtree of Another Tree
    • 653. Two Sum IV - Input is a BST
    • 654. Maximum Binary Tree
    • 700. Search in a Binary Search Tree
    • 701. Insert into a Binary Search Tree
    • 783. Minimum Distance Between BST Nodes
    • 876.Middle of the Linked List
    • 942. DI String Match
  • Notes of algorithms
    • Binary Tree traversal
    • 廣度優先搜尋 (Breadth-first Search)
    • Divide and Conquer
    • Linked list: Insert Node
    • Dynamic programming
    • 深度優先搜尋 (Depth-first Search)
    • Lowest Common Ancestor (LCA)
    • Asymptotic notation
    • Binary search tree
    • AVL Tree (Height Balanced BST)
    • Linked list: Split the list
    • Linked list: Traverse the list
    • Linked list: Delete node
    • Heap sort
    • Cartesian tree
  • C++
Powered by GitBook
On this page
  • 1.Types
  • Adjacency matrix
  • Adjacency list
  • Adjacency set
  • 2.Compares
  • 3.Traversal
  • Depth-first traversal (post order)
  • Breadth-first traversal
  1. Break Away: Programming And Coding Interviews & Cracking coding interview

Graphs

  • Vertices

  • Edges

    • Directed edges: source, destination

    • Undirected edges

      • adjacent nodes

      • degree: 連結的node數

      • path

      • cycle

      • forest- a disjoint set of trees

1.Types

Adjacency matrix

class Graph {
    int [][] adjacencyMatrix;
    int numVertices;
}

public class AdjacencyMatrixGraph implements Graph {
    private int [][] adjacencyMatrix;
    private GraphType graphType = GraphType.DIRECTED;
    private int numVertices = 0; 
    public  AdjacencyMatrixGraph(int numVertices, GraphType graphType) {
        this.numVertices = numVertices;
        this.graphType = graphType;
        
        adjacencyMatrix = new int[numVertices][numVertices];
        
        for (int i = 0; i < numVertices; i++) {
            for (int j = 0; j < numVertices; j++) {
                adjacencyMatrix[i][j] = 0;
            }
        }
    }
    
    public void addEdge(int v1, int v2) {
        if (v1 >= numVertices || V1 < 0 || v2 >= numVertices || v2 < 0) {
            throw new IllegalArgumentException("Vertex number is not valid");
        }
        
        adjacencyMatrix[v1][v2] = 1;
        if (graphType == GraphType.UNDIRECTED) {
             adjacencyMatrix[v2][v1] = 1;
        }
    }
    
    public List<Integar> getAdjacentVertices(int v) {
        if (v >= numVertices || v < 0) {
            throw new IllegalArgumentException("Vertex number is not valid");
        }
        
        List<Integar> adjacencyVerticesList = new ArrayList<>();
        for (int i = 0; i < numVertices; i++) {
            if (adjacencyMatrix[v][i] == 1) {
                adjacencyVerticesList.add(i);
            }
        }
        
        Collections.sort(adjacencyVerticesList);
        
        return adjacencyVerticesList;
    }
}

Adjacency list

  • Each vertex has a pointer to a linked list

  • Downside: The same graph can have multiple representations

class Node {
    int vertexId;
    Node* next;
}

class Gragh {
    List<Node> vertices;
}

Adjacency set

class Node {
    int vertexId;
    Set<Node> nodes;
}

class Gragh {
    List<Node> vertices;
}

public class AdjacencySetGraph implement Graph {
    private List<Node> vertexList = new ArrayList<>();
    private GaraphType = GaraphType.DIRECTED;
    private int numVertices = 0; 
    public  AdjacencyMatrixGraph(int numVertices, GraphType graphType) {
        this.numVertices = numVertices;
        for (int i = 0; i < numVertices; i++) {
            vertexList.add(new Node(i));
        }
        this.graphType = graphType;
    }
    
    public void addEdge(int v1, int v2) {
        if (v1 >= numVertices || V1 < 0 || v2 >= numVertices || v2 < 0) {
            throw new IllegalArgumentException("Vertex number is not valid");
        }
        
        vertexList.get(v1).addEdge(v2);
        if (graphType == GaraphType.UNDIRECTED) {
            vertexList.get(v2).addEdge(v1);
        }
    }
    
    public List<Integar> getAdjacentVertices(int v) {
        if (v >= numVertices || v < 0) {
            throw new IllegalArgumentException("Vertex number is not valid");
        }
        
        return vertexList.get(v).getAdjacentVertices();
    }
}

2.Compares

Matrix

List

Set

Space

V^2

E + V

E + V

Is edge present

1

Degree of V

Log (Degree of V)

Iterate over edges on a vertex

V

Degree of V

Degree of V

Scenario

當連結數夠大時

當連結數少時

當連結數少時

3.Traversal

  • This is very similar to tree traversal

  • In a graph multiple paths can lead from one to another

  • Graph has circle, so the same node can be visited multiple times

    • Keep track of the nodes previously visited

Depth-first traversal (post order)

  • Use a visited list to keep track of nodes already visited

    • e.g., boolean array

public static void depthFirstTraversal(Gragh graph, int[] visited, int currentVertex) {
    if (visited[currentVertex] == 1) {
        return;
    }
    visited[currentVertex] = 1;
    List<Integar> list = new gragh.getAdjacentVertices(currentVertex);
    
    for (int vertex : list) {
        depthFirstTraversal(graph, visited, vertex);
    }
}

Breadth-first traversal

PreviousHeap sortNextTopological sort

Last updated 6 years ago